TFAWS Paper Session

Potential of the Spectral Element
Method in Flow Simulations of
Aerospace Systems
K.E. Davis and B.C. Houchens

Presented By Kenneth Davis

Thermal & Fluids Analysis Workshop TFAWS 2010 August 16-20, 2010 Houston, TX

Overview

Code development

- Utilizes the spectral element method to solve incompressible fluid flow and heat transfer equations
- Written from scratch
- Can handle complex geometries
- Arbitrary application of boundary conditions
- Several typical boundary conditions

Advantages over commercial software

- Total control
- Application of "unusual" boundary conditions
- More accuracy
- More cost-effective

Why Use Spectral Elements?

Accuracy

- Can refine in p as well as h to improve accuracy
- Finite elements and finite volumes are usually limited to hardinement
- p refinement yields better results than h refinement

No need for stabilization

- Finite elements generally use elements (such as linear-linear) that require stabilization
- Spectral elements are stable when using the $P_N P_{N-2}$ grids

Can handle complex geometries

Finite difference methods are limited to simple domains

The Spectral Element Method

- Subset of the finite element method
 - Difference is in the definition of the basis functions
- $P_N P_{N-2}$ Grid
 - Velocity is solved on a Gauss-Legendre-Lobatto grid of order N and pressure is solved on a Gauss-Legendre grid of order N-2
 - Satisfies the Babuska-Brezzi condition
 - Basis functions are Lagrange interpolants through all nodes on the grid
- Galerkin approximation is used for weighting functions

The Spectral Element Method

Discretize the domain

- First using meshing software such as Gambit
- Then build the spectral mesh on each element
- Approximate solution

$$- u^e = \sum_i \psi_i(x, y) u_i$$

Procedure

- Multiply by test function
- Integrate over each element
- Scatter to global matrices
- Newton-Raphson iterations
 - Solve the resulting linear system using GMRES or BiCGStab
- Write data

Solver Structure

Code Input and Output

Input File

```
problem_type
coordinate frame
transient|steady
                transient
                10
mesh file
                cavity.neu
geometry file
                cavity.igs
-----SOLVER PARAMETERS-----
NR iterations
linear solver
                bicgstab
linear_iterations 2000
restart_gmres
                2000
MGscheme
                86468
left precond
                ilu0
right precond
                ilu0
tolerance
                1e-12
initialization
                value
UVPT_init_values 0.0 0.0 0.0 0.0
-----transient parameters-----
numberoftimesteps 100
time_step_size
                0.1
num_ts_bef_output 1
-----FLUID PROPERTIES-----
viscosity
                1.0
density
                100.0
conductivity
                1.0
specific heat
buoyancy&direction off x
               off
boussinesq
ref density
                1.0
ref temperature 0.0
thermal_exp_coeff .05
-----mhd-----
mhdforce
Hartmann Number
                50.0
-----SCALING PARAMETERS-----
Scaling type
                viscous
Length Scale
                1.0
Velocity Scale
Temp_Diff_Scale
ref temperature
-----BOUNDARY CONDITIONS-----
number bnds
-----Flow Conditions-----
                velocity 0.0 0.0
boundary2
                velvarfc if (t<1) -t else -1.0 0.0
-----Energy Conditions-----
boundary1
               temperature 0.0
boundary2
                temperature 0.0
```

Output File

Fluid flow coupled with thermal energy.

Density:	100.0000	
Viscosity:	1.0000E+00	
Thermal Conductivity:		
Specific Heat: 	1.0000	
Transient parameters		
Method: Backwards D	ifferentiation	
Order: Number of Time Steps:	3 100	
Time Step Size:	0.1000	
System Data		
Number of X Momentum Eq	uations :	264
Number of Y Momentum Eq	uations :	264
Number of Continuity Eq	uations :	242
Number of Energy Equati	ons :	264
Number of Total Equatio	ns :	1034

Time Step 1

Init. Residual	s	RMS	ı	Max	l
X Momentum Y Momentum Continuity Energy	 	2.20965E+01 7.87765E-01 1.76589E-02 0.00000E+00		7.20983E+01 6.60260E+00 1.21737E-01 0.00000E+00	
System		1.11723E+01		7.20983E+01	

Nonlinear	Iteration	1		
*******	******	******	*******	*****

Residuals	- 1	RMS	- 1	Max	- 1
X Momentum	- 1	8.63221E-02	- 1	6.55951E-01	- 1
Y Momentum	ĺ	6.36657E-02	ĺ	2.36447E-01	ĺ
Continuity	ĺ	6.80520E-03	ĺ	3.05551E-02	ĺ
Energy	- 1	0.00000E+00	- 1	0.00000E+00	- 1
System	-	5.42977E-02	- 1	6.55951E-01	- 1

Current Code Capabilities

- General geometries are represented exactly (2D only)
 - Code reads IGES files and stores geometry parameters for each curve
 - Must find where mesh and geometry coincide
 - Allows for exact computation of Jacobian
- Boundary conditions can be applied to any boundary
 - Fluid boundary conditions
 - Velocity components
 - Stress components
 - Mixed velocity/stress components
 - Thermal boundary conditions
 - Temperature
 - Heat flux
 - All boundary conditions can vary with space
 - Velocity and temperature can vary with time

Current Code Capabilities

- Initial conditions can vary with space
- Cartesian 2D and 3D, Cylindrical 2D only
 - 2D cylindrical coordinates refers to axisymmetric flows, meaning the coordinates are r and z
 - Currently extending the 3D code to solve in cylindrical coordinates
- High-order transient solutions
 - Attempted Adams-Moulton method, but it was unstable
 - Now use backwards differentiation up to 6th order
- Buoyancy
 - Boussinesq approximation can be applied
 - $\rho = \rho_{ref}[1 \alpha(T T_{ref})]$

Pre-processing Matlab GUI

- Pre-processor writes input file for code
- Provides a simple interface for users unfamiliar with the code and its input file

Backward-Facing Step

- Common benchmark problem
- Re = 109.5 used by A.T. Patera in his 1984 paper introducing spectral elements
- Reattachment occurs at L_r ≈ 5.0 as expected
- Recirculation at the channel expansion is seen

Lid Driven Cavity Flow

- Re = 400
- Top side has dimensionless velocity of 1 to left; all other sides are at rest
- Recirculations qualitatively accurate and the u velocity on the vertical centerline agrees well with previous results

Kovasznay Flow

- Flow behind a two dimensional grid
- Exact solution given by L.I.G.
 Kovasznay in 1948

$$u(x,y) = 1 - e^{\lambda x} cos(2\pi y)$$

$$-v(x,y) = (\lambda/2\pi)e^{\lambda x}\sin(2\pi y)$$

$$- p(x) = (1 - e^{2\lambda x})/2$$

$$- \lambda = Re/2 - (Re^2/4 + 4\pi^2)^{1/2}$$

- Re = 40 for this simulation
- Dirichlet boundary conditions were applied
- Obtained a solution where the L₂ norm of the error in velocity is less than 10⁻¹⁰

Convergence Results

- Simulations were run until the root-mean-square of the fully coupled system residual reached 10⁻¹³
- Increasing the polynomial order gives much more accurate results than decreasing the mesh spacing

- At P = 12, the P simulation is 8 times more accurate
- Comparison to the commercial code Ansys CFX 12.0
 - Uses a finite volume method and linear-linear elements
 - The accuracy of CFX is much less than our own code
 - In both codes, h refinement shows little impact on accuracy

Current Activity

Linear solver

- Currently solve fully coupled system using ILU(0) preconditioned Krylov subspace methods
- Implemented multigrid, but not to satisfaction

Preconditioning

 Currently use ILU(0), but may need something more parallelizable in the future

Linear solver and preconditioning tests

Time (s)	None	Diagonal	ILU(0)
GMRES	160.7	70.8	7.1
BiCGStab	141.4	33.6	7.2

Iterations	None	Diagonal	ILU(0)
GMRES	1728	1109	63
BiCGStab	3498	793	45

Current Activity

- Adding additional boundary conditions
 - Normal/tangential conditions, convection (by coefficient),
 rotational velocity, translational and rotational periodic conditions
- Adding spatial variability to fluid properties
- Parallelizing subroutines
- Extending to 3D
 - Adding all features that are included in 2D code
 - Allowing for cylindrical coordinates
 - Handling all geometries
- Writing a post-processor
 - Currently use Gambit for all post-processing
 - Will compute derivatives of all variables, streamfunction, vorticity, and will integrate any variable over any surface

Future Goals

- Parallelization of entire code
- Represent all 3D geometries exactly
- Turbulence modeling
 - Basic two-equation models
 - $k-\epsilon$
 - $k-\omega$
 - Large eddy simulation
- Solve compressible flow equations

Conclusion

- The spectral element method is an effective method for solving fluid flow and heat transfer problems
- Our in-house code has been benchmarked for several 2D cases, but still needs 3D benchmarking
- p refinement yields more accurate results than h refinement
 - This accuracy makes the spectral element method more attractive than basic finite elements
- Commercial codes like Ansys CFX do not use the spectral element method and, consequently, are limited in accuracy

References

- [1] Patera, A. T. (1984) *J. Comp. Phys., 54,* 468–488.
- [2] Ghia, U. et al. (1982) J. Comp. Phys. 48, 387-411
- [3] Kovasznay, L. I. G. (1948) *Proc. Cambridge Philos. Soc., 44,* 58–62.